Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naturwissenschaften ; 111(3): 22, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607380

RESUMO

Documentation of cryptic trilobite behavior has presented important insights into the paleoecology of this fully extinct arthropod group. One such example is the preservation of trilobites inside the remains of larger animals. To date, evidence for trilobites within cephalopods, gastropods, hyoliths, and other trilobites has been presented. Importantly, most of these interactions show trilobite molts, suggesting that trilobites used larger animals for protection during molting. To expand the record of molted trilobites within cephalopods, we present a unique case of a Toxochasmops vormsiensis trilobite within the body chamber of a Gorbyoceras textumaraneum nautiloid from the Upper Ordovician Kõrgessaare Formation of Estonia. By examining this material, we present new insights into the ecology of pterygometopid trilobites, highlighting how these forms used large cephalopods as areas to successfully molt.


Assuntos
Artrópodes , Muda , Animais , Estônia , Ecologia
2.
PeerJ ; 11: e16634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144188

RESUMO

Biomineralised remains of trilobites provide important insight into the evolutionary history of a diverse, extinct group of arthropods. Their exoskeletons are also ideal for recording malformations, including evidence of post-injury repair. Re-examination of historic collections and the study of new specimens is important for enhancing knowledge on trilobite malformations across this diverse clade. To expand the records of these abnormalities and present explanations for their formation, we document eight malformed trilobite specimens, as well as one carcass, housed within the Commonwealth Palaeontological Collection at Geoscience Australia in Canberra. We present examples of Asthenopsis, Burminresia, Centropleura, Coronocephalus, Dolicholeptus, Galahetes, Papyriaspis, and Xystridura from Cambrian, Ordovician, and Silurian deposits of Australia. Most of the malformed specimens show W-, U-, or L-shaped indentations that reflect injuries from either failed predation or complications during moulting, and a mangled carcass is ascribed to either successful predation or post-mortem scavenging. We also uncover examples of teratologies, such as bifurcated pygidial ribs and pygidial asymmetry, in addition to evidence of abnormal recovery (i.e., fusion of thoracic segments) from a traumatic incident.


Assuntos
Artrópodes , Fósseis , Animais , Evolução Biológica , Paleontologia , Comportamento Predatório
3.
PeerJ ; 11: e16326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37904847

RESUMO

Injured trilobites present insight into how a completely extinct group of arthropods responded to traumatic experiences, such as failed predation and moulting complications. These specimens are therefore important for more thoroughly understanding the Paleozoic predator-prey systems that involved trilobites. To expand the record of injured trilobites, we present new examples of injured Ogygopsis klotzi and Olenoides serratus from the Campsite Cliff Shale Member of the Burgess Shale Formation (Cambrian, Miaolingian, Wuliuan), Paradoxides (Paradoxides) paradoxissimus gracilis from the Jince Formation (Cambrian, Miaolingian, Drumian), Ogygiocarella angustissima from the Llanfawr Mudstones Formation (Middle-Late Ordovician, Darriwilian-Sandbian), and Ogygiocarella debuchii from the Meadowtown Formation, (Middle-Late Ordovician, Darriwilian-Sandbian). We consider the possible origins of these malformations and conclude that most injuries reflect failed predation. Within this framework, possible predators are presented, and we uncover a marked shift in the diversity of animals that targeted trilobites in the Ordovician. We also collate other records of injured Ogygo. klotzi and Ol. serratus, and Ogygi. debuchii, highlighting that these species are targets for further understanding patterns and records of trilobite injuries.


Assuntos
Artrópodes , Museus , Animais , Fósseis , Comportamento Predatório , Muda
4.
Proc Biol Sci ; 290(2002): 20230638, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37403497

RESUMO

The stem-group euarthropod Anomalocaris canadensis is one of the largest Cambrian animals and is often considered the quintessential apex predator of its time. This radiodont is commonly interpreted as a demersal hunter, responsible for inflicting injuries seen in benthic trilobites. However, controversy surrounds the ability of A. canadensis to use its spinose frontal appendages to masticate or even manipulate biomineralized prey. Here, we apply a new integrative computational approach, combining three-dimensional digital modelling, kinematics, finite-element analysis (FEA) and computational fluid dynamics (CFD) to rigorously analyse an A. canadensis feeding appendage and test its morphofunctional limits. These models corroborate a raptorial function, but expose inconsistencies with a capacity for durophagy. In particular, FEA results show that certain parts of the appendage would have experienced high degrees of plastic deformation, especially at the endites, the points of impact with prey. The CFD results demonstrate that outstretched appendages produced low drag and hence represented the optimal orientation for speed, permitting acceleration bursts to capture prey. These data, when combined with evidence regarding the functional morphology of its oral cone, eyes, body flaps and tail fan, suggest that A. canadensis was an agile nektonic predator that fed on soft-bodied animals swimming in a well-lit water column above the benthos. The lifestyle of A. canadensis and that of other radiodonts, including plausible durophages, suggests that niche partitioning across this clade influenced the dynamics of Cambrian food webs, impacting on a diverse array of organisms at different sizes, tiers and trophic levels.


Assuntos
Artrópodes , Animais , Artrópodes/anatomia & histologia , Evolução Biológica , Fósseis , Cadeia Alimentar , Estado Nutricional , Comportamento Predatório
5.
PeerJ ; 10: e14515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523454

RESUMO

Eurypterids (sea scorpions) are extinct aquatic chelicerates. Within this group, members of Pterygotidae represent some of the largest known marine arthropods. Representatives of this family all have hypertrophied, anteriorly-directed chelicerae and are commonly considered Silurian and Devonian apex predators. Despite a long history of research interest in these appendages, pterygotids have been subject to limited biomechanical investigation. Here, we present finite element analysis (FEA) models of four different pterygotid chelicerae-those of Acutiramus bohemicus, Erettopterus bilobus, Jaekelopterus rhenaniae, and Pterygotus anglicus-informed through muscle data and finite element models (FEMs) of chelae from 16 extant scorpion taxa. We find that Er. bilobus and Pt. anglicus have comparable stress patterns to modern scorpions, suggesting a generalised diet that probably included other eurypterids and, in the Devonian species, armoured fishes, as indicated by co-occurring fauna. Acutiramus bohemicus is markedly different, with the stress being concentrated in the proximal free ramus and the serrated denticles. This indicates a morphology better suited for targeting softer prey. Jaekelopterus rhenaniae exhibits much lower stress across the entire model. This, combined with an extremely large body size, suggests that the species likely fed on larger and harder prey, including heavily armoured fishes. The range of cheliceral morphologies and stress patterns within Pterygotidae demonstrate that members of this family had variable diets, with only the most derived species likely to feed on armoured prey, such as placoderms. Indeed, increased sizes of these forms throughout the mid-Palaeozoic may represent an 'arms race' between eurypterids and armoured fishes, with Devonian pterygotids adapting to the rapid diversification of placoderms.


Assuntos
Artrópodes , Escorpiões , Animais , Escorpiões/anatomia & histologia , Fósseis , Artrópodes/anatomia & histologia , Comportamento Predatório , Dieta
6.
PeerJ ; 10: e14308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353603

RESUMO

Abnormal trilobites present insight into how arthropods with fully biomineralised exoskeletons recovered from injuries, genetic malfunctions, and pathologies. Records of abnormal Silurian trilobites in particular show an abundance of specimens with teratologies and a limited record of injuries. Here we expand the record of abnormal Silurian trilobites by presenting seven new abnormal specimens of Odontopleura (Sinespinaspis) markhami from the early Silurian (Llandovery, Telychian) Cotton Formation, New South Wales. We use these specimens to illustrate novel evidence for asymmetric distribution of pleural thoracic spine bases. These abnormal bases likely reflect genetic complications, resulting in morphologies that would unlikely have aided the fitness of abnormal individuals. In considering records of malformed Silurian trilobites more broadly, we propose that the largest trilobites may have been prey at this time. This indicates a possible change in the trophic position of trilobites when compared to Cambrian and Ordovician palaeoecosystems.


Assuntos
Artrópodes , Evolução Biológica , Animais , Humanos , Fósseis , Austrália , New South Wales
7.
PeerJ ; 10: e14185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248717

RESUMO

Durophagous predation in the Cambrian is typically recorded as malformed shells and trilobites, with rarer evidence in the form of coprolites and shelly gut contents. Reporting novel evidence for shell-crushing further expands the understanding of where and when in the Cambrian durophagy was present. To expand the current documentation and present new records of malformed trilobites from the Cambrian of China, we present an injured Redlichia (Pteroredlichia) chinensis from the lower Cambrian Balang Formation, western Hunan, South China. The specimen has two distinct injuries along the thorax. The injuries show different degrees of regeneration, suggesting that the specimen was attacked twice. We propose that the individual may have been targeted more readily for the second attack. This predatory approach would have been highly energy efficient, maximizing net energy gain during the attack.


Assuntos
Fósseis , Comportamento Predatório , Animais , China/epidemiologia
8.
PeerJ ; 10: e13326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480564

RESUMO

Constraining the timing of morphological innovations within xiphosurid evolution is central for understanding when and how such a long-lived group exploited vacant ecological niches over the majority of the Phanerozoic. To expand the knowledge on the evolution of select xiphosurid forms, we reconsider the four Australian taxa: Austrolimulus fletcheri, Dubbolimulus peetae, Tasmaniolimulus patersoni, and Victalimulus mcqueeni. In revisiting these taxa, we determine that, contrary to previous suggestion, T. patersoni arose after the Permian and the origin of over-developed genal spine structures within Austrolimulidae is exclusive to the Triassic. To increase the availability of morphological data pertaining to these unique forms, we also examined the holotypes of the four xiphosurids using synchrotron radiation X-ray tomography (SRXT). Such non-destructive, in situ imaging of palaeontological specimens can aid in the identification of novel morphological data by obviating the need for potentially extensive preparation of fossils from the surrounding rock matrix. This is particularly important for rare and/or delicate holotypes. Here, SRXT was used to emphasize A. fletcheri and T. patersoni cardiac lobe morphologies and illustrate aspects of the V. mcqueeni thoracetronic doublure, appendage impressions, and moveable spine notches. Unfortunately, the strongly compacted D. peetae precluded the identification of any internal structures, but appendage impressions were observed. The application of computational fluid dynamics to high-resolution 3D reconstructions are proposed to understand the hydrodynamic properties of divergent genal spine morphologies of austrolimulid xiphosurids.


Assuntos
Caranguejos Ferradura , Síncrotrons , Animais , Caranguejos Ferradura/anatomia & histologia , Austrália , Paleontologia , Tomografia por Raios X
9.
iScience ; 25(1): 103662, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35024591

RESUMO

Megalograptidae and Mixopteridae with elongate, spinose prosomal appendages are unique early Palaeozoic sea scorpions (Eurypterida). These features were presumably used for hunting, an untested hypothesis. Here, we present 3D model-based kinematic range of motion (ROM) analyses of Megalograptus ohioensis and Mixopterus kiaeri and compare these to modern analogs. This comparison confirms that the eurypterid appendages were likely raptorial, used in grabbing and holding prey for consumption. The Megalograptus ohioensis model illustrates notable Appendage III flexibility, indicating hypertrophied spines on Appendage III may have held prey, while Appendage II likely ripped immobilized prey. Mixopterus kiaeri, conversely, constructed a capture basket with Appendage III, and impaled prey with Appendage II elongated spines. Thus, megalograptid and mixopterid frontalmost appendages constructed a double basket system prior to moving dismembered prey to the chelicerae. Such 3D kinematic modeling presents a more complete understanding of these peculiar euchelicerates and highlights their possible position within past ecosystems.

10.
Integr Zool ; 17(1): 156-167, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34532979

RESUMO

Amblypygi are tropical and subtropical ambush predators that use elongated, raptorial pedipalps for different activities. Although pedipalp use in predation and courtship has been explored in videography in vivo analyses, kinematic ex vivo examination of these appendages has not been conducted. Here, we rectify this lack of data by using micro-CT scans to 3D-kinematically model the appendage morphology and the range of motion (ROM) of the joints for Damon medius and Heterophrynus elaphus. We illustrate the successful application of this technique to terrestrial euarthropods in determining the maximum ROM values for each pedipalp joint. We also note that, in life, these values would be lower due to motion restricting structures like tendons, arthrodial membranes, and muscles. We further compare our maximum values obtained here with data from video-based motion analyses. The ROM of each joint shows the greatest flexibility in the femur-tibia joint (140-150°), the lowest in the basitarsus-claw joint (35-40°). ROM in the tibia-basitarsus joint is markedly distinct (D. medius: 44°; H. elaphus: 105°). This disparity reflects how H. elaphus uses the joint in the capture basket, while D. medius uses the femur-tibia joint to form the capture basket. We further illustrate notable vertical motion of the H. elaphus pedipalp compared to D. medius. This difference reflects the retro-ventral trochanter apophysis of H. elaphus. Our study opens the possibility to further whip spider kinematic understanding. Examination of other taxa using this approach will result in a more comprehensive understanding of the ecological significance and ethological implications of this unique arachnid group.


Assuntos
Extremidades , Aranhas , Animais , Fenômenos Biomecânicos , Aranhas/anatomia & histologia
11.
Naturwissenschaften ; 108(6): 58, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34668077

RESUMO

Documentation of malformed trilobites has presented invaluable insight into the palaeobiology of a wholly extinct euarthropod group. Although the northern hemisphere record is relatively well documented, examples of abnormal trilobites from Australia are limited. Furthermore, most recorded specimens are from Cambrian-aged rocks. To extend this limited record, we document five new examples of malformed Australian trilobites from the Middle and Late Silurian (Wenlock and Ludlow) deposits of the Yarralumla Formation of the Australian Capital Territory and Yarwood Siltstone Member, Black Bog Shale in New South Wales. We record the first examples of abnormal pygidial and thoracic nodes and present new evidence for bifurcating pygidial ribs. These abnormal features are considered teratological morphologies. The aberrant nodes likely arose through developmental malfunctions, while the bifurcating ribs represent either similar defects, or an injury that developed into a teratological feature. Explanations for the limited record of malformed Australian trilobites and for the decrease in injured trilobites after the end-Ordovician are presented. Further documentation of malformed Australian trilobites from the middle-to-late Paleozoic will undoubtedly paint a more complete picture of how Gondwanan taxa recovered from injuries or unfortunate developmental complications.


Assuntos
Fósseis , Austrália
12.
PeerJ ; 9: e11709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249518

RESUMO

Horseshoe crabs are extant marine euchelicerates that have a fossil record extending well into the Palaeozoic. Extreme xiphosurid morphologies arose during this evolutionary history. These forms often reflected the occupation of freshwater or marginal conditions. This is particularly the case for Austrolimulidae-a xiphosurid family that has recently been subject to thorough taxonomic examination. Expanding the austrolimulid record, we present new material from the Olenekian-aged Petropavlovka Formation in European Russia and assign this material to Attenborolimulus superspinosus gen. et sp. nov. A geometric morphometric analysis of 23 horseshoe crab genera illustrates that the new taxon is distinct from limulid and paleolimulid morphologies, supporting the assignment within Austrolimulidae. In considering Triassic austrolimulids, we suggest that the hypertrophy or reduction in exoskeletal sections illustrate how species within the family evolved as opportunistic taxa after the end-Permian extinction.

13.
PeerJ ; 9: e10980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732551

RESUMO

Xiphosurida is an ingroup of marine Euchelicerata often referred to as "living fossils". However, this oxymoronic term is inapplicable for Paleozoic and early Mesozoic forms, as during these periods the group experienced notable evolutionary radiations; particularly the diverse late Palaeozoic clade Belinurina. Despite the iconic nature of the group, select species in this clade have been left undescribed in the light of recent geometric morphometric and phylogenetic considerations and methodologies. To this end, we re-describe Prolimulus woodwardi Fritsch, 1899 using new and type specimens to reveal more details on appendage anatomy and possible ecology. Furthermore, we present geometric morphometric and phylogenetic analyses that uncover relationships between P. woodwardi and other belinurids without genal spines. Both approaches highlight that a clade containing Prolimulus Fritsch, 1899, Liomesaspis Raymond, 1944, Alanops Racheboeuf, Vannier & Anderson, 2002 and Stilpnocephalus Selden, Simonetto & Marsiglio, 2019 may exist. While we do not erect a new group to contain these genera, we note that these genera exemplify the extreme limits of the Belinurina radiation and a peak in horseshoe crab diversity and disparity. This evidence also illustrates how changes in heterochronic timing are a key evolutionary phenomenon that can drive radiations among animals.

14.
Proc Biol Sci ; 288(1943): 20202075, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33499790

RESUMO

Durophagy arose in the Cambrian and greatly influenced the diversification of biomineralized defensive structures throughout the Phanerozoic. Spinose gnathobases on protopodites of Cambrian euarthropod limbs are considered key innovations for shell-crushing, yet few studies have demonstrated their effectiveness with biomechanical models. Here we present finite-element analysis models of two Cambrian trilobites with prominent gnathobases-Redlichia rex and Olenoides serratus-and compare these to the protopodites of the Cambrian euarthropod Sidneyia inexpectans and the modern American horseshoe crab, Limulus polyphemus. Results show that L. polyphemus, S. inexpectans and R. rex have broadly similar microstrain patterns, reflecting effective durophagous abilities. Conversely, low microstrain values across the O. serratus protopodite suggest that the elongate gnathobasic spines transferred minimal strain, implying that this species was less well-adapted to masticate hard prey. These results confirm that Cambrian euarthropods with transversely elongate protopodites bearing short, robust gnathobasic spines were likely durophages. Comparatively, taxa with shorter protopodites armed with long spines, such as O. serratus, were more likely restricted to a soft food diet. The prevalence of Cambrian gnathobase-bearing euarthropods and their various feeding specializations may have accelerated the development of complex trophic relationships within early animal ecosystems, especially the 'arms race' between predators and biomineralized prey.


Assuntos
Artrópodes , Fósseis , Animais , Evolução Biológica , Ecossistema , Extremidades/anatomia & histologia , Mastigação
15.
Naturwissenschaften ; 107(5): 46, 2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33009933

RESUMO

Xiphosura are extant marine chelicerates that have displayed apparent morphological conservatism and remarkable survivorship across their ~ 480 Ma fossil record. The easily recognisable features that are known to even the earliest xiphosurans-a crescentic prosoma and often trapezoidal thoracetron (opisthosoma)-have generated debate surrounding their origins and taxonomic significance. This interest resulted in the description of numerous horseshoe crab species during the early to mid-twentieth century, particularly in Russia, that have remained unrevised since their original publications and unconsidered in the light of recent phylogenetic hypotheses. Here, we re-examine the non-belinurid taxa housed within the Chernyshev Central Museum for Geological Exploration in Saint Petersburg. We present the first formal diagnosis of Bellinuroopsis rossicus, erect Shpineviolimulus jakovlevi (Glushenko and Ivanov, 1961) comb. nov., to contain the species formerly described as 'Paleolimulus' jakovlevi and refer Paleolimulus juresanensis to Paleolimulidae incertae sedis. Phylogenetic analysis places S. jakovlevi at the base of Limulina. This position, coupled with a prosomal shield that is notably larger than the thoracetron, and lack of hypertrophied genal spines, suggests that this morphology may represent the ancestral austrolimulid shape. As an extension of this revision, we assessed the general austrolimulid morphological characters and uncovered two possible groups of these bizarre xiphosurids.


Assuntos
Caranguejos Ferradura/classificação , Animais , Caranguejos Ferradura/anatomia & histologia , Filogenia , Federação Russa , Especificidade da Espécie
16.
PeerJ ; 8: e8453, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117612

RESUMO

Biomineralised trilobite exoskeletons provide a 250 million year record of abnormalities in one of the most diverse arthropod groups in history. One type of abnormality-repaired injuries-have allowed palaeobiologists to document records of Paleozoic predation, accidental damage, and complications in moulting experienced by the group. Although Cambrian trilobite injuries are fairly well documented, the illustration of new injured specimens will produce a more complete understanding of Cambrian prey items. To align with this perspective, nine new abnormal specimens displaying healed injuries from the Smithsonian National Museum of Natural History collection are documented. The injury pattern conforms to the suggestion of lateralised prey defence or predator preference, but it is highlighted that the root cause for such patterns is obscured by the lumping of data across different palaeoecological and environmental conditions. Further studies of Cambrian trilobites with injuries represent a key direction for uncovering evidence for the Cambrian escalation event.

17.
Sci Rep ; 9(1): 17102, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745138

RESUMO

Horseshoe crabs are archetypal marine chelicerates with a fossil record extending from the Lower Ordovician to today. The major horseshoe crab groups are thought to have arisen in the middle to late Palaeozoic. Here we present the oldest known limuloid from the lower Carboniferous (Tournaisian stage, c. 350 million years ago) of Scotland: Albalimulus bottoni gen. et sp. nov. A comprehensive phylogenetic analysis supports the placement of A. bottoni as a representative of the extant family Limulidae and 100 million years older than any other limulid taxon. The use of geometric morphometric analyses corroborate the erection of the new taxon and illustrates the exploitation of morphospace by xiphosurids. This new taxon highlights the complex evolutionary history of xiphosurids and the importance of documenting these unique Palaeozoic individuals.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Caranguejos Ferradura/anatomia & histologia , Caranguejos Ferradura/fisiologia , Filogenia , Animais , Caranguejos Ferradura/classificação , Escócia
18.
Naturwissenschaften ; 106(7-8): 38, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209559

RESUMO

Xiphosurida-crown group horseshoe crabs-are a group of morphologically conservative marine chelicerates (at least since the Jurassic). They represent an idealised example of evolutionary stasis. Unfortunately, body fossils of horseshoe crabs seldom preserve appendages and their associated features; thus, an important aspect of their morphology is absent in explorations of their conservative Bauplan. As such, fossil horseshoe crab appendages are rarely considered within a comparative framework: previous comparisons have focussed almost exclusively on extant taxa to the exclusion of extinct taxa. Here, we examine eight specimens of the xiphosurid Tachypleus syriacus (Woodward, 1879) from the Cenomanian (ca 100 Ma) Konservat-Lagerstätten of Lebanon, five of which preserve the cephalothoracic and thoracetronic appendages in exceptional detail. Comparing these appendages of T. syriacus with other fossil xiphosurids highlights the conserved nature of appendage construction across Xiphosurida, including examples of Austrolimulidae, Paleolimulidae, and Limulidae. Conversely, Belinuridae have more elongate cephalothoracic appendages relative to body length. Differences in appendage sizes are likely related to the freshwater and possible subaerial life modes of belinurids, contrasting with the primarily marine habits of other families. The morphological similarity of T. syriacus to extant members of the genus indicates that the conserved nature of the generic lineage can be extended to ecological adaptations, notably burrowing, swimming, possible diet, and sexual dimorphism.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Caranguejos Ferradura/anatomia & histologia , Caranguejos Ferradura/classificação , Adaptação Fisiológica , Animais , Ecossistema , Extremidades/anatomia & histologia , Filogenia , Especificidade da Espécie
19.
Proc Biol Sci ; 285(1889)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355715

RESUMO

The biology of the American horseshoe crab, Limulus polyphemus, is well documented-including its dietary habits, particularly the ability to crush shell with gnathobasic walking appendages-but virtually nothing is known about the feeding biomechanics of this iconic arthropod. Limulus polyphemus is also considered the archetypal functional analogue of various extinct groups with serial gnathobasic appendages, including eurypterids, trilobites and other early arthropods, especially Sidneyia inexpectans from the mid-Cambrian (508 Myr) Burgess Shale of Canada. Exceptionally preserved specimens of S. inexpectans show evidence suggestive of durophagous (shell-crushing) tendencies-including thick gnathobasic spine cuticle and shelly gut contents-but the masticatory capabilities of this fossil species have yet to be compared with modern durophagous arthropods. Here, we use advanced computational techniques, specifically a unique application of 3D finite-element analysis (FEA), to model the feeding mechanics of L. polyphemus and S. inexpectans: the first such analyses of a modern horseshoe crab and a fossil arthropod. Results show that mechanical performance of the feeding appendages in both arthropods is remarkably similar, suggesting that S. inexpectans had similar shell-crushing capabilities to L. polyphemus This biomechanical solution to processing shelly food therefore has a history extending over 500 Myr, arising soon after the first shell-bearing animals. Arrival of durophagous predators during the early phase of animal evolution undoubtedly fuelled the Cambrian 'arms race' that involved a rapid increase in diversity, disparity and abundance of biomineralized prey species.


Assuntos
Artrópodes/anatomia & histologia , Artrópodes/fisiologia , Dieta , Fósseis , Animais , Fenômenos Biomecânicos , Colúmbia Britânica , Biologia Computacional , Extremidades/anatomia & histologia , Extremidades/fisiologia , Comportamento Alimentar , Fósseis/anatomia & histologia , Caranguejos Ferradura/anatomia & histologia , Caranguejos Ferradura/fisiologia
20.
iScience ; 8: 295-303, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30342972

RESUMO

The fossil record provides empirical patterns of morphological change through time and is central to the study of the tempo and mode of evolution. Here we apply likelihood-based time-series analyses to the near-continuous fossil record of Neogene planktonic foraminifera and reveal a morphological shift along the Truncorotalia lineage. Based on a geometric morphometric dataset of 1,459 specimens, spanning 5.9-4.5 Ma, we recover a shift in the mode of evolution from a disparate latest Miocene morphospace to a highly constrained early Pliocene morphospace. Our recovered dynamics are consistent with those stipulated by Simpson's quantum evolution and Eldredge-Gould's punctuated equilibria and supports previous suppositions that even within a single lineage, evolutionary dynamics require a multi-parameter model framework to describe. We show that foraminiferal lineages are not necessarily gradual and can experience significant and rapid transitions along their evolutionary trajectories and reaffirm the utility of multivariate datasets for their future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...